Genetic and phenotypic characterization of dnaC mutations.

AUTOR(ES)
RESUMO

The dna-1, dna-2, dna-7, and dna-28 mutations, all of which are located near min 89.5 on the E. coli linkage map, have been characterized further. As previously demonstrated for dna-2 and dna-28, neither the dna-1 nor dna-7 mutation affects the ability of a strain to produce bacteriophage lambda at temperatures non-permissive for the continued replication of the bacterial chromosome. The reported temperature-sensitive inhibition of lambda production in a strain carrying dna-7 is shown to be a consequence of a thermosensitive host specificity mutation in the hsm gene and not of the dna-7 mutation. The four dna mutations are recessive to the wild type and define a single dnaC cistron according to standard complementation criteria. Unlike other characterized dnaC mutants, however, strains carrying the dnaC1 or dnaC7 alleles exhibit an abrupt cessation of deoxyribonucleic acid synthesis at 42 C that appears to be more compatible with a defect in deoxyribonucleic acid chain elongation rather than in initiation. The possibility that the apparent elongation defect is actually a composite effect of residual synthesis and deoxyribonucleic acid degradation is raised by the net deoxyribonucleic acid degradation observed in the dnaC1 strain at 42 C. Several alternative possibilities for the function of the dnaC gene product are suggested.

Documentos Relacionados