Funcionalization of mesoporous silica with 2-bezothiazolethiol and 3-mercaptopropyltrimetoxysilane for electronalytical application / Funcionalização de sílicas mesoporosas com benzotiazol-2-tiol e 3-mercaptopropiltrimetoxisilano para aplicações em eletroanalítica

AUTOR(ES)
DATA DE PUBLICAÇÃO

2009

RESUMO

Mesoporous silicas were functionalised by immobilisation of organic substances covalently bonded to the silanol groups on the silica surface. SBA-15 nanostructured silica was functionalised by post-synthesis with 2-benzothiazolethiol and silica films modified with 3-mercaptopropyltrimethoxysilane were obtained by direct functionalisation. The characterization of these materials was performed by IR spectroscopy, X-ray diffraction, thermogravimetry, elemental analysis, nuclear magnetic resonance, atomic force microscopy and scanning electron microscopy. Composite graphite- polyurethane and carbon paste electrodes modified with SBA-15 silica organofunctionalised with 2-benzothiazolethiol (BTPSBA) and glassy carbon electrode modified with silica film thiol-functionalised were prepared and evaluated in relation to their performance in voltammetric determination of heavy metals in natural water and sugar cane spirit samples. Parameters affecting the voltammetric peak current were optimized and cadmium(II) showed a linear response in the range from 1.0 to 10.0 x 10-6 mol L-1 with detection limit of 4.5 x 10-7 mol L-1, using the carbon paste electrode modified with BTPSBA and differential pulse anodic stripping voltammetry (DPASV). Cd(II) spiked in a natural water sample was determined with 96.4% mean recovery at µmol L-1 level. The same electrode was also evaluated in the determination of lead, copper and mercury in natural water and sugar cane spirit samples by DPASV. Analytical curves were linear in concentration ranges from 3.0 to 70.0 x 10-7 mol L-1 (Pb2+), 8.0 to 100.0 x 10-7 mol L-1 (Cu2+) and 2.0 to 10.0 x 10-6 mol L-1 (Hg2+), with detection limits of 4.0 x10-8 mol L-1 (Pb2+), 2.0 x 10-7 mol L-1 (Cu2+) and 4.0 x 10-7 mol L-1 (Hg2+). The results indicated that the carbon paste electrode modified with BTPSBA is sensitive and effective in the simultaneous determination of Pb2+, Cu2+ and Hg2+ in the analyzed samples. The graphite-polyurethane composite electrode modified with BTPSBA was evaluated in the simultaneous detection of cadmium, lead, copper and mercury, using differential pulse and square wave anodic stripping voltammetry (SWASV). Using SWASV and 5 min accumulation time, the linear response ranges were 1.0 x 10-7 to 1.0 x 10-6 mol L-1 (Cd2+), 7.0 x 10-9 to 90.0 nmol L-1 (Pb2+), 5.0 x 10-8 to 9.0 x 10-7 mol L-1 (Cu2+) and 1.0 x 10-8 to 1.0 x 10-7 mol L-1 (Hg2+), with detection limits of 29.0 nmol L-1 (Cd2+), 0.8 nmol L-1 (Pb2+), 8.0 nmol L-1 (Cu2+) and 0.9 nmol L-1 (Hg2+). The modified electrode was tested successfully in the determination of Cd2+, Pb2+, Cu2+ and Hg2+ in natural water samples. Hg(II) was also determined in natural water samples using glassy carbon electrode modified with silica film thiol-functionalised and observed a detection limit of 4.3 nmol L-1, using 15 min of pre-concentration time. Hg(II) was determined between 97.0 and 101.4% mean recovery at 10-8 mol L-1 level. The results indicate that this electrode is selective and sensitive for the Hg(II) determination. In all cases, silica SBA-15 organofunctionalised with 2-benzothiazolethiol and silica film thiol-functionalised improved the sensitivity of the electrodes.

ASSUNTO(S)

modified electrodes metais pesados heavy metals eletrodos modificados organofunctionalised mesoporous silica sílicas mesoporosas organofuncionalizadas

Documentos Relacionados