From reactants to products via simple hydrogen-bonding networks: Information transmission in chemical reactions

AUTOR(ES)
FONTE

National Academy of Sciences

RESUMO

The transmission of information is ubiquitous in nature and often occurs through supramolecular hydrogen bonding processes. Here we report that there is a remarkable correlation during synthesis between the efficiency of the hydrogen-bond-directed assembly of peptide-based [2]rotaxanes and the symmetry distortion of the macrocycle in the structure of the final product. It transpires that the ability of the flexible macrocycle-precursor to wrap around an unsymmetrical hydrogen bonding template affects both the reaction yield and a quantifiable measure of the symmetry distortion of the macrocycle in the product. When the yields of peptide rotaxane-forming reactions are high, so is the symmetry distortion in the macrocycle; when the yields are low, indicating a poor fit between the components, the macrocycle symmetry is relatively unaffected by the thread. Thus during a synthetic sequence, as in complex biological assembly processes, hydrogen bonding can code and transmit “information”—in this case a distortion from symmetry—between chemical entities by means of a supramolecularly driven multicomponent assembly process. If this phenomenon is general, it could have far reaching consequences for the use of supramolecular-directed reactions in organic chemistry.

Documentos Relacionados