Fracture Properties of Geopolymer Concrete Based on Metakaolin, Fly Ash and Rice Rusk Ash

AUTOR(ES)
FONTE

Mat. Res.

DATA DE PUBLICAÇÃO

17/11/2017

RESUMO

Geopolymers are exclusively mineral nature and are considered an alternative to materials based on Portland clinker, whose production accounts for about 5% of anthropogenic CO2 emissions in the world. The geopolymer cement concrete (GCC) may be prepared from natural oxide-aluminosilicates such as metakaolin (MK), or synthetic, such as fly ash (FA) together with active silica contained in the rice husk ash (RHA). The fracture properties of the Portland cement concrete (PCC) with 25 MPa and 50 MPa, and of three different geopolymeric concretes with the same strength Classes were determined for comparative analysis. The aim of this study is to provide support to begin the use of geopolymers in the reinforced concrete precasting Industry. Three-point bending tests of notched beams with a/d (notch depth/beam depth) of 0.5 from RILEM TC80-FMT Recommendations were used to determine the critical values of K, G, R and J-integral for crack propagation under mode I. The results showed that the geopolymeric concretes exhibit similar mechanical behavior and fracture properties higher that those determined in PCC for the same strength class.

Documentos Relacionados