Formulação tridimensional completa para o aquecimento a laser de solidos em regime não-linear : modelo e aplicações

AUTOR(ES)
DATA DE PUBLICAÇÃO

1995

RESUMO

O advento dos lasers causou uma grande revolução na área de processamento de materiais, que atingiu um rápido desenvolvimento, nos últimos anos. O amplo espectro de materiais processáveis atualmente com lasers o comprova. Ainda assim, um grande número de pesquisadores continua buscando respostas para aspectos ainda não elucidados dos desafios lançados pela interação de laser com a matéria, em condições de alta intensidade de irradiação. Dentro desse contexto, nossa Tese dedicou-se a investigar em extensão e profundidade o controle paramétrico do aquecimento a laser, tendo em vista explorar numa etapa posterior sua influência na viabilização do controle conformacional do processo de microperfuração de materiais com lasers. Estudando, entre outras coisas, as condições e as características peculiares do avanço da frente de calor num sólido irradiado por um laser potente, em diversas configurações operacionais, investigamos, em particular, os efeitos da forma espacial e duração do pulso do laser, condutividade térmica e da difusividade térmica da amostra, assim como os efeitos de variações nas grandezas físicas que interferem no processo de acoplamento laser-sólido, tais como a refletividade e o coeficiente de absorção, sobre a forma e evolução temporal das isotermas nas amostras. Isto se dá porque a variação da temperatura afeta todos os parâmetros físicos que regem o processo de aquecimento a laser. Em nosso estudo consideramos, além de amostras homogêneas, amostras estratificadas de duas e três camadas, e amostras intrinsicamente heterogêneas, i.e., amostras onde a condutividade e difusividade térmicas variam continuamente com a profundidade da amostra. Para obter a distribuição temporal e espacial da temperatura num sólido aquecido localmente por um laser, e proceder os estudos acima delineados, nossa abordagem partiu especificamente de uma versão não-linear da equação parabólica para difusão de calor , porém com estrita observação dos limites de validade da teoria de Fourier. Além da não-linearidade que advém da dependência explícita dos parâmetros térmicos do material com a temperatura, interessou-nos também, investigar , em detalhe, os efeitos da variação correspondente da refletividade e coeficiente de absorção. A metodologia de tratamento que demos ao problema envolve a solução numérica das equações linear e não-linear de difusão de calor. Desenvolvemos e exploramos um novo algoritmo, específico para tratar a formulação dada a questão no presente trabalho. Nele, a discretização das funções e derivadas que aparecem na equação de difusão é feita através do método das diferenças finitas. Usamos uma versão modificada, que desenvolvemos, da formulação de Crank - Nicholson para obtermos um sistema de equações algébricas acopladas, que foi resolvido pelo método iterativo das sobre relaxações sucessivas (SOR). A implementação deste método foi feita em linguagem FORTRAN, executada no computador IBM 3090 da UNICAMP, e posteriormente, em estação de trabalho SUN-SPARC II. Em resumo, os cálculos com base em nosso modelo levaram-nos a concluir que é possível, em princípio, controlar a forma e a velocidade de avanço da frente de calor (isoterma de fusão) num sólido, a temperatura máxima no centro focal, o tempo necessário para alcançá-la e as taxas de aquecimento e resfriamento, dentre outros, atuando-se judiciosamente tanto sobre os parâmetros térmicos como sobre os parâmetros ópticos da amostra. Por exemplo, ao tratar com as amostras estratificadas (camadas sucessivas com propriedades adequadamente diferenciadas) ficou evidente uma clara tendência da isoterma de fusão a assumir uma conformação cada vez mais cilíndrica, em oposição ao perfil tipicamente cônico da correspondente isoterma em materiais homogêneos. Este efeito se torna ainda mais crítico quando o material tem essas propriedades variando continuamente com a profundidade. Esta Tese, enfim, elucida em detalhe os fundamentos teóricos e práticos que devem ser observados no controle paramétrico do processamento de materiais com laser com vista à obtenção de uma moldagem conformacional, como por exemplo, na micro-perfuração de materiais com lasers

ASSUNTO(S)

equações - soluções numericas equação de calor lasers em fisica - aquecimento

Documentos Relacionados