Formation of Mo−Si−Ti Alloys by Self−propagating Combustion Synthesis

AUTOR(ES)
FONTE

Mat. Res.

DATA DE PUBLICAÇÃO

2015-08

RESUMO

Test specimens with nominal compositions MoSi2, (Mo0.9Ti0.1)Si2, (Mo0.8Ti0.2)Si2, (Mo0.7Ti0.3)Si2, (Mo0.6Ti0.4)Si2, (Mo0.5Ti0.5)Si2 and (Mo0.4Ti0.6)Si2 were prepared by combustion synthesis. The combustion mode, propagation velocity of combustion wave, combustion temperature and product structure were investigated. Specimens MoSi2, (Mo0.9Ti0.1)Si2, (Mo0.8Ti0.2)Si2, (Mo0.7Ti0.3)Si2, underwent spontaneously self−propagating combustion synthesis. However, the (Mo0.6Ti0.4)Si2 and (Mo0.5Ti0.5)Si2 specimens required a sustainable energy supply to complete the combustion synthesis reaction. There was no combustion synthesis reaction in specimen (Mo0.4Ti0.6)Si2. The combustion wave propagated along a spiral trajectory from top to the bottom of the specimen compacts in a layer by layer mode. The propagation velocity of the combustion wave reduced with the addition of titanium. The X-ray diffraction analysis showed that the Cllb-MoSi2 and C40-(Mo,Ti)Si2 type phases were formed during combustion synthesis. The intensity of diffraction peaks of C40-(Mo,Ti)Si2 phase increased with Ti content.

Documentos Relacionados