Fluidodinamica e secagem do polihidroxibutirato (PHB) em leito fluidizado pulsado rotativo / Fluid dynamic and drying of the poly-hydroxybutyrate (PHB) in rotating-pulsed fluidized bed

AUTOR(ES)
DATA DE PUBLICAÇÃO

2009

RESUMO

Poly-hydroxybutyrate (PHB) is polyester, completely biodegradable and biocompatible. The interest on its development, production and commercialization has arisen due to its biodegradability and production integrated to the sugar and alcohol chain. Drying is an important step of the PHB production because an adequate post-processing is achieved only at moisture contents less than 0.5%. The goal of this work was to study a drying technology for this innovative product of relevant importance for the environmental preservation. The fluid-dynamic and drying mechanisms analyses were made in a rotating-pulsed fluidized bed (RPFB). The equipment was chosen based on the fact that the wet PHB is cohesive and doesn t work properly in a conventional fluid bed. The RPFB dryer uses the air pulsation to undo the PHB agglomerate improving the circulation of the particles inside the bed. This study also included the physical characterization of the material before and after the drying. For the characterization tests that wouldn t work with moisture presence, the liophilization was the best alternative to characterize the material before the drying process. The PHBshowed an excellent dynamic behavior in RPFB. The pulsation frequency of 10 Hz presented the most favorable fluid dynamic conditions, resulting in moderate pressure drop and regime stability. Based on the fluid-dynamic study it was possible to determine the minimum vigorous fluidizing air flow (MVF), an important parameter to set the air velocity range for the drying experiments. An excellent contact between the PHB particles and the hot air was obtained during the drying runs, with particles elutriation only during the first 10 minutes. The influence of the temperature, velocity and frequency of air pulsation was evaluated on the drying kinetics. The PHB drying kinetics presented constant and decreasing-rate drying periods. The drying process was positively influenced by the air temperature and velocity. Furthermore, the presence of another solvent additionally to the water was detected in the PHB samples through the comparison between the drying curves obtained with moisture measurements made in an oven and in Karl Fischer equipment. The thermo gravimetric analysis also helped to detect the presence of another solvent in the PHB samples. The physical characterization tests showed that the drying operating conditions didn t cause degradation on PHB particles. The RPFB dryer showed to be a viable technique to dry PHB, as moisture content of 0.56% was reached at optimal operating conditions of air temperature of 90oC, air velocity of 0,40 m/s and frequency of pulsation of 7 Hz

ASSUNTO(S)

leito fluidizado rotating-pulsed fluidized bed fluidodinamica poly-hydroxybutyrate fluid dynamic secagem poli (hidroxibutirato) drying

Documentos Relacionados