Fluctuations of calcium, phosphorus, sodium, potassium, and chlorine in single alpha and beta cells during glucose perifusion of rat islets.

AUTOR(ES)
RESUMO

To study the relationship between islet hormonal secretion and intracellular content of five elements, a rat islet perifusion technique was used in 24 paired experiments. Control and experimental chambers each containing 100 islets, received 2.8 and 16.7 mM D-glucose, respectively. Effluent was collected frequently for hormone measurements. At eight different time intervals form 0--30 min islets were fixed and prepared for scanning electron microscopy. Over 900 unobscured alpha and beta cells were selected by size and shape criteria. Energy dispersive x-ray analysis was applied to each single cell to determine relative content of calcium (Ca), potassium (K), sodium (Na), chlorine (Cl), and phosphorus (P). Experimental chambers exhibited typical acute (0--9 min) and second phase (10--30 min) insulin secretion in association with suppression of glucagon release after 10 min. At 2 min an abrupt upward K spike in both alpha and beta cells was followed at 3--4 min with a 1.5- to 2-fold rise of Ca and a reciprocal decrease in K, Na, Cl, and P. From 3 to 30 min biphasic insulin secretion. Reduced alpha cell calcium after 6 min preceded suppression of glucagon secretion. After 2 min K related inversely to Ca content in both alpha and beta cells. These results could not be reproduced when D-galactose was substituted for D-glucose. We conclude that sequential changes of Ca content that are reciprocally related to K are predictive of beta cell insulin release and suppression of alpha cell glucagon secretion.

Documentos Relacionados