Finite element validation on adhesive joint for composite fuselage model

AUTOR(ES)
FONTE

Journal of the Brazilian Society of Mechanical Sciences and Engineering

DATA DE PUBLICAÇÃO

2012-03

RESUMO

A novel fabrication miniature composite fuselage structure consisted of a woven composite laminated with an adhesively bonded butt joint under axial compression loading is numerically simulated in this research. A Finite Element Analysis (FEA) via ABAQUS/Explicit was utilized to capture the complete compressive response that predicts the crushing behaviour and its mechanical strength from initial compression loading until its final failure mode. A woven C-glass fibre/epoxy 200 g/m² composite laminated (908) with the orthotropic elastic material properties is modelled as a continuum composite layup in the proposed numerical model. The adhesively bonded joint progression is considered using cohesive element technology that allows the correct accounting for the energy involved in the crushing process. The capability of the bonded joint to withstand axial crushing impact from debonding failure was examined. This proposed model was used to observe the crushing load and collapse modes under axial compression impact. The results that were extracted and computed from the FE modelling have shown a good agreement with the experimental test.

Documentos Relacionados