Fibras opticas de vidros teluritos de tungstenio para amplificação de grande largura de banda / Fibras opticas de vidros teluritos de tungstenio para amplificação de grande largura de banda

AUTOR(ES)
DATA DE PUBLICAÇÃO

2005

RESUMO

In optical communications, high capacity information transmission systems demand broadband optical amplifiers. Therefore, it has become increasingly necessary to manufacture devices with such characteristics. Optical amplifier devices based on Tellurite glasses are ideal for manufacturing broadband optical amplifiers. In the last few decades, most researchers have focused on developing amplifiers based on Telluirte glass. As a consequence, Tellurite glass characterization is essential nowadays. In this work, we will report the structural, thermal, mechanical and optical characterization of tellurite glass as a function of TeO2, Na2O, WO3, Nb2O5 composition. From an optimum composition Tellurite glass, it was possible to fabricate tubes and rods for optical fiber pre-forms. Moreover, the novel methods of suction and centrifugation used to fabricate Tellurite glass tubes and rods are shown. For the first time we are reporting the fabrication of conventional core-clad and photonic Tellurite optical fibers with an Er3+-Tm3+ co-doped core. Also, we will report bandwidth measurements from amplified spontaneous emission (ASE) spectra. We have shown a 187nm (the highest broadband value reported) using a 7500ppm Er2O3- 5000ppm Tm2O3 co-doped tellurite optical fiber. In addition, measurements of 4I13/2 level lifetimes for Er3+ - doped tellurite optical fibers and Er3+ -Tm3+ co-doped tellurite optical fibers were taken using 790nm (420mW) and 980nm (120mW) pump lasers. We report the quantum efficiency measurements of radiative transition probability obtained from calculated and measured lifetimes. The calculated lifetime was obtained using the Judd-Ofelt teory. Finally, the study of energy transfer (ET) processes between 4I13/2 and 3F4 levels was carried out in order to observe the amplification quantum efficiency around 1550nm band

ASSUNTO(S)

rare earth ions energia - transferencia vidros de tungstenio-telurito amplificadores oticos fibras oticas optical amplifiers ions das terras raras energy transfer optical fibers tungsten-tellurite glasses

Documentos Relacionados