Fibras lignocelulósicas como agente de reforço de compósitos de matriz fenólica e lignofenólica / Lignocellulosic fibers as reinforcing agents in lignophenolic and phenolic matrix composites

AUTOR(ES)
DATA DE PUBLICAÇÃO

2006

RESUMO

In this work, lignocellulosic fibers from different sources (banana tree and coconut) were used as reinforcing agents in the preparation of phenolic and lignophenolic matrix composites. The phenol used in the matrix formulation was substituted both partially and totally by lignin, extracted from sugarcane bagasse by organosolv process, in the preparation of the lignophenolic thermosets. The composites were molded under controlled pressure and heating. Besides composition analysis, the following techniques were used to characterize the lignocellulosic fibers: X-ray diffraction, inverse gas chromatography (IGC), infrared spectroscopy (IR), differential scanning calorimetry (DSC), thermogravimetry (TG), scanning electron microscopy (SEM), and tensile strength. The prepolymers (phenolic and lignophenolic) were characterized by size exclusion chromatography (SEC), IR, DSC, and TG. The composites obtained were characterized by Izod impact strength, dynamic mechanical analysis (DMA), water absorption, DSC, and TG. The results revealed that: -the total substitution of phenol by lignin is viable; - from the two reinforcing fibers used (banana tree and coconut, both treated and untreated with alkaline solution and ionized air), the former presented the best results as a phenolic matrix reinforcement, possibly due to their larger cellulose content, which is the component of the lignocellulosic fibers present in the crystalline domains. This has a greater influence on the mechanical properties of the fibers, and consequently on their action as composite reinforcement; -concerning the lignophenolic composites, mainly those in which phenol was completely substituted with lignin, although the coconut fibers do not have good mechanical properties due to their low cellulose content, their high lignin content contributed to a very important property, that is, a considerable increase in the affinity between the fiber and the matrix, which also has a high content of typical lignin structures. The intensity of the interactions at the interface may have made the load transfer from the matrix to the fiber during impact easier, resulting in a material with the highest impact strength, when compared to others prepared in the present study; -the water absorption results were generally important as besides information on the affinity of the material for water, they also gave further information on the fiber/matrix interface. In the case of composites prepared from prepolymers whose phenol was totally substituted by lignin, the water absorption tests were also important to indicate the best prepolymer preparation process, which was in agreement with impact assay results. It is important to highlight the fact that it is was possible to prepare a composite with good properties using lignin as a macromonomer in the preparation of a polymeric matrix reinforced with natural fibers, that is to say, with a high percentage of material derived from renewable sources

ASSUNTO(S)

lignophenolic and phenolic matrix composites lignocellulosic fibers compósitos de matriz fenólica e lignofenólica fibras lignocelulósicas reinforcing agents

Documentos Relacionados