Ferrichrome transport in Escherichia coli K-12: altered substrate specificity of mutated periplasmic FhuD and interaction of FhuD with the integral membrane protein FhuB.

AUTOR(ES)
RESUMO

FhuD is the periplasmic binding protein of the ferric hydroxamate transport system of Escherichia coli. FhuD was isolated and purified as a His-tag-labeled derivative on a Ni-chelate resin. The dissociation constants for ferric hydroxamates were estimated from the concentration-dependent decrease in the intrinsic fluorescence intensity of His-tag-FhuD and were found to be 0.4 microM for ferric aerobactin, 1.0 microM for ferrichrome, 0.3 microM for ferric coprogen, and 5.4 microM for the antibiotic albomycin. Ferrichrome A, ferrioxamine B, and ferrioxamine E, which are poorly taken up via the Fhu system, displayed dissociation constants of 79, 36, and 42 microM, respectively. These are the first estimated dissociation constants reported for a binding protein of a microbial iron transport system. Mutants impaired in the interaction of ferric hydroxamates with FhuD were isolated. One mutated FhuD, with a W-to-L mutation at position 68 [FhuD(W68L)], differed from wild-type FhuD in transport activity in that ferric coprogen supported promotion of growth of the mutant on iron-limited medium, while ferrichrome was nearly inactive. The dissociation constants of ferric hydroxamates were higher for FhuD(W68L) than for wild-type FhuD and lower for ferric coprogen (2.2 microM) than for ferrichrome (156 microM). Another mutated FhuD, FhuD(A150S, P175L), showed a weak response to ferrichrome and albomycin and exhibited dissociation constants two- to threefold higher than that of wild-type FhuD. Interaction of FhuD with the cytoplasmic membrane transport protein FhuB was studied by determining protection of FhuB degradation by trypsin and proteinase K and by cross-linking experiments. His-tag-FhuD and His-tag-FhuD loaded with aerobactin specifically prevented degradation of FhuB and were cross-linked to FhuB. FhuD loaded with substrate and also FhuD free of substrate were able to interact with FhuB.

Documentos Relacionados