Fatores Formadores da Paisagem Litorânea: A bacia do Guaratuba, São Paulo-Brasil / FORMATION FACTORS OF THE COASTAL LANDSCAPE: THE CASE OF THE GUARATUBA WATERSHED, SÃO PAULO, BRAZIL.

AUTOR(ES)
DATA DE PUBLICAÇÃO

1999

RESUMO

This study aims to characterize and correlate elements of the biotic-physical environment, drainage, geology, landform, vegetation cover, soil and land use by means of interpretation of aerial photographs, satellite images and field work. It also aims to test the technique of circular sampling the drainage network for identifying soil mapping units in the Serra do Mar complex, which corresponds to very steep areas, with dense drainage, and heavily forested areas, with difficult access. The Guaratuba watershed has distinctive compartments. In the coastal plain, pioneer herbaceous and arboreous plant species grow on redoximorphic soils developed on marine and fluvial-marine sediments (Spodosols and gley soils). The highlands have tropical rain forest on Ultisols, Inceptisols, and Entisols developed from gneissic bedrock in a hilly relief. The granitic escarpments have shallow soils (Entisols and Inceptisols) covered by tropical forests. The regional climate is characterized by an annual rainfall above 2000 mm, no distinct dry season, and an average temperature that can range locally from 19o to 25oC. Drainage, geology, landform, slope, hipsometry, vegetation and soil maps were produced. It was also produced in the Guaratuba watershed 48 circular samples, of 50 ha each, distributed in the highlands, mountains, and coastal plain. Additionally, pedological transects were studied in further detail locally. The circular sampling study concluded that the drainage pattern indicates the predominant geological formations, whereas the number of rivers and its associated indexes indicate the soils and the superficial material. The statistics of the number of river, river length, relief, geology, and vegetation indexes were more efficient in discriminating the soil groups in the sub-compartments, grouping samples with the same soil associations, easing therefore the mapping work. It was also concluded that the elements influence the soil distribution and composition, due to the infiltration/runoff ratio, which determines the development and thickness of the weathering mantle, shaping the relief and allowing the establishment of the vegetation. In the coastal areas, relief, natural vegetation and geological material determine distinctive soil units, which can be mapped through these elements. Thus, the exuberant vegetation and the hot and humid climate throughout the watershed support the idea that, in the coastal plain, the landforms and drainage are the main factors influencing soil development. Whereas in the highlands and in the mountainous areas, the slope and parent material give a more important contribution to soil development. It was observed in the whole watershed, therefore, a direct relationship between landform compartments, natural vegetation, geology and soils, whereas the localized study in the transects indicates transformation and morpho-pedological processes, like the ones where spodosols grade to gley soils, and spodosols grade to histosols, indicating landscape genesis and evolution. The work in the coastal zone allows the extrapolation of the results to contiguous areas, defining soil associations as well as the structure of the natural vegetation cover and landforms. This association should be expected in areas that have similar geology (granites and gneisses and its derived sediments).

ASSUNTO(S)

pedology mapeamento recursos naturais natural resources mapping meio físico-biótico amostra circular pedologia aerial photointerpretation relação solo/paisagem circular sampling soil-landscape relationships fotointerpretação physical-biotic environment

Documentos Relacionados