Fases Geométricas, Quantização de Landau e Computação Quâantica Holonômica para Partículas Neutras na Presença de Defeitos Topológicos

AUTOR(ES)
DATA DE PUBLICAÇÃO

2009

RESUMO

Neste trabalho estudamos inicialmente o surgimento de fases geometricas nas dinâmicas quânticas relativística e não-relativística de uma partícula neutra que possui momento de dipolo magnético e elétrico permanente interagindo com campos elétricos e magnéticos externos na presença de defeitos topológicos lineares. Para descrevermos defeitos topológicos lineares usamos a aproximação proposta por Katanaev e Volovich, onde defeitos lineares em sólidos são descritos por elementos de linha que são soluções das equações de Einstein no contexto da relatividade geral. Analisamos também a inuência de efeitos não-inerciais na dinâmica quântica de uma partícula neutra em dois tipos distintos de referenciais para os observadores: um é o referencial de Fermi-Walker e outro é um referencial girante. Vemos que a diferença entre dois referenciais está na presença/ausência de efeitos de arrasto do espaço-tempo que irá influenciar diretamente na mudança de fase na funçãao de onda da partícula neutra. Em seguida, usamos nosso estudo de fases geométricas para fazer aplicações na Computação Quântica Holonômica onde mostramos uma nova maneira de implementar a Computação Quântica Holonômica através da interação entre momentos de dipolo e campos externos e pela presença de defeitos topológicos lineares. Outra aplicação para a Computação Quântica Holonômica está baseada na estrutura de defeitos topológicos em um material chamado grafeno. Na presença de defeitos topológicos lineares, esse material apresenta duas fases quânticas de origens distintas: uma da mistura dos pontos de Fermi e outra da topologia do defeito. Para dar uma descrição geométrica para a origem de cada fase no grafeno usamos a Teoria de Kaluza-Klein, onde a dimensão extra sugerida por esta teoria descreve os pontos de Fermi no grafeno. Portanto, a implementação da Computação Quântica Holonômica no grafeno está baseada na possibilidade de construir cones e anticones de grafite de tal maneira que se possa controlar os fluxos quânticos no grafeno. Na última parte deste trabalho estudamos a quantização de Landau para partículas neutras tanto na dinâmica não-relativística quanto na dinâmica relativística. Na dinâmica não-relativítica, estudamos a quantização de Landau na presença de defeitos em um referecial inercial e, em seguida, em um referencial nãoo-inercial. Na dinâmica relativística, estudamos inicialmente a quantização de Landau no espaço-tempo plano em duas configurações de campos diferentes. Por fim, estudamos a quantização de Landau relativística para partículas neutras no espaço-tempo da deslocação cósmica.

ASSUNTO(S)

fisica efeito he-mckellar-wilkens topological defects kaluza-klein theory defeitos topológicos efeito sagnac sagnac efect dirac equation spinors computação quântica holonômica landau quantization efeito aharonov-casher espaço-tempo curvo holonomic quantum computation anandan quantum phases quantização de landau fases geométricas efeito mashhoon mashhoon efect graphene espaço-tempo curvo e com torção fermi-walker reference frame curved spacetime he-mckellar-wilkens efect geometric phases local reference frame foldy-wouthuyssen approach aharonov- casher efect cuverd spacetime with torsion field rotating frames

Documentos Relacionados