Extended Release Felodipine Self-Nanoemulsifying System

AUTOR(ES)
FONTE

Springer US

RESUMO

The purpose of the present study was to formulate a self-nanoemulsifying system (SNES) containing model lipophilic drug, felodipine (FLD), to improve its solubility. The SNES was formulated using varying amounts of Miglyol® 840 (as an oil), Cremophor® EL (as a surfactant), and Capmul® MCM (as a co-surfactant). The SNES were characterized for turbidity, droplet size and in vitro FLD release. The SNES containing oil, surfactant, and co-surfactant in the weight ratio of 3.5:1.0:1.0, respectively, showed good emulsification, median droplet size of 421 nm, and rapid FLD release (>90% release in 15 min). Gelling was induced in the SNES by addition of Aerosil® 200 (A 200). Rheological studies clearly demonstrated the formation of gelled microstructure with enhanced elasticity for SNES with A 200. Since FLD warrants extended delivery for management of hypertension, the gelled SNES was further encased within the hydrophobic Gelucire® 43/01 (GEL) coat to extend the release of FLD. Caprol® PGE-860 (CAP) was added to this coat as a release enhancer. No interaction was seen between GEL and CAP in differential scanning calorimetry. The effect of two formulation variables in the encased SNES, viz., the gelling agent (A200) and the release enhancer (CAP), on the in vitro FLD release was evaluated using 32 factorial design experiments. CAP by virtue of channel formation in GEL coat favored the FLD release, while the A200 retarded the FLD release by inducing gelling. At later time points, an interaction between these two variables was found to govern extended release of FLD. The developed gelled SNES encased within the GEL coat can be used as an extended release composition for lipophilic drugs.

Documentos Relacionados