Expression of recA in Deinococcus radiodurans.

AUTOR(ES)
RESUMO

Deinococcus (formerly Micrococcus) radiodurans is remarkable for its extraordinary resistance to ionizing and UV irradiation and many other agents that damage DNA. This organism can repair > 100 double-strand breaks per chromosome induced by ionizing radiation without lethality or mutagenesis. We have previously observed that expression of D. radiodurans recA in Escherichia coli appears lethal. We now find that the RecA protein of D. radiodurans is ot detectable in D. radiodurans except in the setting of DNA damage and that termination of its synthesis is associated with the onset of deinococcal growth. The synthesis of Shigella flexneri RecA (protein sequence identical to that of E. coli RecA) in recA-defective D. radiodurans is described. Despite a large accumulation of the S. flexneri RecA in D. radiodurans, there is no complementation of any D. radiodurans recA phenotype, including DNA damage sensitivity, inhibition of natural transformation, or inability to support a plasmid that requires RecA for replication. To ensure that the cloned S. flexneri recA gene was not inactivated, it was rescued from D. radiodurans and was shown to function normally in E. coli. We conclude that neither D. radiodurans nor S. flexneri RecA is functional in the other species, nor are the kinetics of induction and suppression similar to each other, indicating a difference between these two proteins in their modes of action.

Documentos Relacionados