Expression and function of TRK-B and BDNF in human neuroblastomas.

AUTOR(ES)
RESUMO

There is considerable interest in the role of the TRK family of neuotrophin receptors in regulating growth and differentiation in normal and neoplastic nerve cells. A neuroblastoma is a common pediatric tumor derived from the neural crest, and the majority of favorable neuroblastomas express a high level of TRK-A mRNA. However, little is known about the expression or function of TRK-B in these tumors. TRK-B encodes a tyrosine kinase that binds to brain-derived neuotrophic factor (BDNF), as well as neurotrophin-3 (NT-3) and NT-4/5. We have studied the N-myc-amplified human neuroblastoma cell line, SMS-KCN, which expresses both TRK-B and BDNF. Exogenous BDNF induces tyrosine phosphorylation of TRK-B as well as phosphorylation of phospholipase C-gamma 1, the extracellular signal-regulated kinases 1 and 2, and phosphatidylinositol-3 kinase. BDNF also induces expression of the immediate-early genes c-FOS and NGFI-A but not NGFI-B or NGFI-C. In addition, BDNF appears to promote cell survival and neurite outgrowth. SMS-KCN cells also express TRK-A, which is phosphorylated in response to nerve growth factor. However, the downstream TRK-A signaling is apparently defective. Finally, we determined that in a series of 74 primary neuroblastomas, 36% express TRK-B mRNA, 68% express BDNF mRNA, and 31% express both. Truncated TRK-B appears to be preferentially expressed in more-differentiated tumors (ganglioneuromas and ganglioneuroblastomas), whereas full-length TRK-B is expressed almost exclusively in immature neuroblastomas with N-myc amplification. Our findings suggest that in TRK-B-expressing human neuroblastomas, BDNF promotes survival and induces neurite outgrowth in an autocrine or paracrine manner. The BDNF/TRK-B pathway may be particularly important for growth and differentiation of neuroblastomas with N-myc amplification.

Documentos Relacionados