Excitatory drive to the alpha-motoneuron pool during a fatiguing submaximal contraction in man.

AUTOR(ES)
RESUMO

1. This study was undertaken to examine changes of excitatory drive to the triceps surae alpha-motoneuron pool during fatiguing submaximal isometric contractions in man. Eight healthy subjects maintained isometric plantar flexions at 30 percent of maximum voluntary contraction (MVC) until the limit of endurance (range, 6-9 min). 2. Excitability of the alpha-motoneuron pool to Ia afferent stimulation (H reflex), electromyograms (EMG) and maximum compound motor unit action potentials (Mmax) from the lateral (LG) and medial heads (MG) of the gastrocnemius as well as from the soleus muscle (Sol) were recorded throughout the contraction. Superimposed maximum twitch torques (twitch occlusion) and isometric torque fluctuations (tremor) were also recorded as indirect measures of excitatory drive. 3. H reflexes were studied at different levels of underlying voluntary contraction to assess the relationship between H reflex amplitude and excitatory drive. With increasing levels of underlying contraction up to MVC, superimposed H reflex amplitude increased for LG in six subjects, for MG in all eight and for Sol in five. In the remaining cases, H reflex amplitude first increased and then plateaued between 30-50% of MVC. 4. H/Mmax ratios increased during fatigue in those muscles that showed an H reflex amplitude increase with high levels of underlying contraction. In these cases, LG and MG H/Mmax increased significantly after about 50 and 20% of endurance time onward, respectively, whereas Sol H/Mmax demonstrated a significant increase up to 40% of endurance time. 5. EMG root mean square (r.m.s.) increased linearly throughout the contraction for all three muscles, while tremor r.m.s. increased in a non-linear way, with a steeper increase from 60% of endurance time onward. Superimposed twitch amplitude decreased significantly from 25% of endurance time onward. 6. It is concluded that during fatiguing isometric contractions at 30% of MVC, the excitatory drive to the triceps surae alpha-motoneuron pool increases. This is thought to be a compensatory mechanism to facilitate recruitment of new, unfatigued motor units (MUs), and/or to increase MU firing rates. The facts that the twitch is not abolished at endurance limit and that the EMG does not attain its unfatigued MVC level are strong indications that central fatigue occurred during the sustained submaximal contraction.

Documentos Relacionados