Excision of pyrimidine dimers from nuclear deoxyribonucleic acid in ultraviolet-irradiated Dictyostelium discoideum.

AUTOR(ES)
RESUMO

A sensitive endonuclease assay was used to study the fate of pyrimidine dimers introduced by ultraviolet irradiation into the nuclear deoxyribonucleic acid of the cellular slime mold Dictyostelium discoideum. Analysis of the frequency of T4 endonuclease V-induced single-strand breaks by alkaline sucrose gradient sedimentation showed that strain NC4 (rad+) removed greater than 98% of the dimers induced by irradiation at 40 J/m2 (254 nm) within 215 min after irradiation. HPS104 (radC44), a mutant sensitive to ultraviolet irradiation, removed 91% under these conditions, although at a significantly slower rate than NC4: only 8% were removed during the 10- to 15-min period immediately after irradiation, whereas NC4 excised 64% during this interval. HPS104 thus appears to be deficient in the activity(ies) responsible for rapidly incising ultraviolet-irradiated nuclear deoxyribonucleic acid at the sites of pyrimidine dimers.

Documentos Relacionados