Evolução de acarodomácias em Bignonieae (Bignoniaceae) / Evolution of acarodomatia in Bignonieae (Bignoniaceae)

AUTOR(ES)
DATA DE PUBLICAÇÃO

2009

RESUMO

Acarodomatia (or leaf domatia) are cavities or hair tufts found on the axils of veins on the abaxial surface of leaves. Several species of woody angiosperms mediate a mutualism with benefic mites (fungivorous and predaceous) through these structures. In this symbiotic relation, the leaf domatia provide refuge and protection to mites against natural enemies and desiccating conditions, while the mites protect the plants against pathogenic fungi and phytophagous arthropods. These structures are present in many species of the tribe Bignonieae (Bignoniaceae), a monophyletic group with approximately 382 species of neotropical lianas and shrubs. The wide variation of acarodomatia in the tribe associated with the availability of a robust phylogeny for the group makes Bignonieae an excellent model to address the evolution of these structures. The objective of this study was to characterize the acarodomatia of Bignonieae and investigate the evolution of these structures in the group. Furthermore, this study intended to test for correlated patterns of evolution between leaf domatia and traits potentially associated with acarophily: leaflet pubescence and extra floral nectaries (EFNs). Acarodomatia were found in 58 of the 103 analyzed species, representing 12 of the 20 genera of Bignonieae sampled within the phylogeny of the group. Primary, secondary and tertiary domatia were encountered, as well three different domatia components: pocket, trichomes and pit. High intraspecific variation was encountered in those traits. Furthermore, high homoplasy was also encountered, with multiple evolutions and reversals of each trait being documented. A positive correlation in the pattern of evolution of the primary, secondary and tertiary domatia was found, as well as a sequential evolution of these structures: first primary domatia evolved, which was followed by the evolution of secondary domatia and, subsequently the evolution of tertiary domatia. As far as the components of the acarodomatia are concerned, pockets and trichomes were omnipresent and their evolutionary pattern correlated. The evolution of the pit, on the other hand, was not associated to the evolution of any of the other components. The evolutionary pattern of leaf pubescence indicated that, in general, trichomes over the veins of the leaflets evolved first and subsequently spread throughout the blade. The evolutionary pattern of acarodomatia was also shown to be correlated with the evolution of leaflet pubescence. It is possible that pubescence and acarodomatia might act together to promote a beneficial plant-mite mutualism. In addition, the multiple origins of the acarodomatia were always associated with the presence of trichomes, suggesting that trichomes must have had an important role in acarophily. No correlation was found between the evolution of leaf domatia and the evolution of EFNs. This study represents the first investigation of the evolution of acarodomatia, and brings important contributions for future studies on different aspects of the biology of these structures in Bignonieae, especially in what concerns the beneficial association between plants and mites.

ASSUNTO(S)

bignonieae bignonieae mutualismo planta-ácaro benéfico acarodomácias plant-mite mutualism acarodomacia

Documentos Relacionados