Evidence for functional interaction between elongation factor Tu and 16S ribosomal RNA.

AUTOR(ES)
RESUMO

Translation of the genetic code requires the accurate selection of elongation factor (EF)-Tu.GTP.tRNA ternary complexes at the ribosomal acceptor site, or A site. Several independent lines of evidence have implicated the universally conserved 530 loop of 16S rRNA in this process; yet its precise role has not been identified. Using an allele-specific chemical probing strategy, we have examined the functional defect caused by a dominant lethal G-->A substitution at position 530. We find that mutant ribosomes are impaired in EF-Tu-dependent binding of aminoacyl-tRNA in vitro; in contrast, nonenzymatic binding of tRNA to the A and P sites is unaffected, indicating that the defect involves an EF-Tu-related function rather than tRNA-ribosome interactions per se. In vivo, the mutant ribosomes are found in polysomes at low levels and contain reduced amounts of A-site-bound tRNA, but normal levels of P-site tRNA, in agreement with the in vitro results; thus the dominant lethal phenotype of mutations at G530 can be explained by impaired interaction of mutant ribosomes with ternary complex. These results provide evidence for a newly defined function of 16S rRNA--namely, modulation of EF-Tu activity during translation.

Documentos Relacionados