Evidence for Coexistence of Two Distinct Functional Groups of Sulfate-Reducing Bacteria in Salt Marsh Sediment

AUTOR(ES)
RESUMO

Oxidation of acetate in salt marsh sediment was inhibited by the addition of fluoroacetate, and also by the addition of molybdate, an inhibitor of sulfate-reducing bacteria. Molybdate had no effect upon the metabolism of acetate in a freshwater sediment in the absence of sulfate. The inhibitory effect of molybdate on acetate turnover in the marine sediment seemed to be because of its inhibiting sulfate-reducing bacteria which oxidized acetate to carbon dioxide. Sulfide was not recovered from sediment in the presence of molybdate added as an inhibitor of sulfate-reducing bacteria, but sulfide was recovered quantitatively even in the presence of molybdate by the addition of the strong reducing agent titanium chloride before acidification of the sediment. Reduction of sulfate to sulfide by the sulfate-reducing bacteria in the sediment was only partially inhibited by fluoroacetate, but completely inhibited by molybdate addition. This was interpreted as showing the presence of two functional groups of sulfate-reducing bacteria—one group oxidizing acetate, and another group probably oxidizing hydrogen.

Documentos Relacionados