Evidence for catabolite inhibition in regulation of pentose utilization and transport in the ruminal bacterium Selenomonas ruminantium.

AUTOR(ES)
RESUMO

Pentose sugars can be an important energy source for ruminal bacteria, but there has been relatively little study regarding the regulation of pentose utilization and transport by these organisms. Selenomonas ruminantium, a prevalent ruminal bacterium, actively metabolizes xylose and arabinose. When strain D was incubated with a combination of glucose and xylose or arabinose, the hexose was preferentially utilized over pentoses, and similar preferences were observed for sucrose and maltose. However, there was simultaneous utilization of cellobiose and pentoses. Continuous-culture studies indicated that at a low dilution rate (0.10 h-1) the organism was able to co-utilize glucose and xylose. This co-utilization was associated with growth rate-dependent decreases in glucose phosphotransferase activity, and it appeared that inhibition of pentose utilization was due to catabolite inhibition by the glucose phosphotransferase transport system. Xylose transport activity in strain D required induction, while arabinose permease synthesis did not require inducer but was subject to repression by glucose. Since an electrical potential or a chemical gradient of protons drove xylose and arabinose uptake, pentose-proton symport systems apparently contributed to transport.

Documentos Relacionados