Evaluation of effectiveness of the sanitization of a water purification system. Sterilization of medical devices, residual dissipation of ethylene oxide and the use of green fluorescent protein (GFP) as an indicator of process control / Avaliação de eficácia da sanitização de um sistema de purificação de água. Esterilização de artigos médicos, dissipação residual do óxido de etileno e uso da proteína verde fluorescente (GFP) como inidicador de controle do processo

AUTOR(ES)
DATA DE PUBLICAÇÃO

2007

RESUMO

The water exerts important paper in different phases of critical items manufacture in the health care units, pharmaceutical industries, hospitals and clinics, becoming necessary a rigorous control of the water purification systems, storage and distribution, in order to prevent biofilms formation and cross-contamination between devices and patients, who are submitted to critical articles and parenteral solution application. The sterilization of critical devices by ethylene oxide (ETO) should predict minimum addition of possible contaminants and residues. Considering that the purified water and the sterilization are crucial factors for medical devices, this work was divided in two parts. The first part evaluated continuously the stages of the system for the purification of the water, which purity level is critical and determines the quality of the washing of thermoplastic components used in the manufacture of critical items. The maximum levels of heterotrophic load (log10 UFC/100mL) found throughout the water purification system were: 3.48 log10 in the water inlet; 3.57 log10 in the multimedium filters; 3.75 log10 in the softeners; 4.97 log10 in the activated carbon filter; 2.53 log10 in the reverse osmosis; 2.70 log10 in the tank of storage and distribution; 2.56 log10 in the UV lamp; 2.53 log10 in the 0.05µm filters; 1.98 log10 in the consumption points. Flavimonas oryzihabitans and Micrococcus luteus were the main Gram-negative and Grampositive bacteria, respectively found in the purified water after reverse osmosis. The second part of this study had as objective the determination of the needed aeration time for blood oxygenators and sets of PVC tubing must be kept in aeration room for dissipation of ETO residues; and also evaluated the possibility of GFP as biosensor. ETO is used as in a mixture (10% ETO and 90% CO2). Residual levels of ETO and its derivatives, ethylene chloridrin (ECH) and ethylene glycol (EG), which remain in these devices, must be controlled to prevent serious injuries to the patients. The sterilization process of the oxygenators and sets of PVC tubing was monitored with Bacillus atrophaeus and fluorescent green protein (GFP). The temperature, pressure and humidity were controlled in the sterilization cycles of 2 h (short cycle), 4 h (half cycle) and 8 h (long cycle). The dissipation curves of the residues were determined by gaseous chromatography and the residual concentrations were lower than 25 ppm of ETO and ECH and lower than 250 ppm of EG immediately after the sterilization processes for oxygenators and after 221 hours of aeration for the sets of PVC tubing. Reductions in the fluorescence intensity of GFP were observed as a function of the exposition time to the ETO. No growth of B. atrophaeus spores was observed after cycles.

ASSUNTO(S)

Óxido de etileno reverse osmosis ethylene oxide Água purificada osmose reversa medical devices sterilization purified water esterilização de artigos médicos sanitização sanitization

Documentos Relacionados