Estudo sobre a redução de Fe3+ por extratos aquosos de cultivos de Ceriporiopsis subvermispora sobre madeira e sua relação com a peroxidação de lipídeos / Studies on Fe3+ reduction by aqueous extracts recovered from cultures of Ceriporiopsis subvermispora on wood and its correlation with lipid peroxidation

AUTOR(ES)
FONTE

IBICT - Instituto Brasileiro de Informação em Ciência e Tecnologia

DATA DE PUBLICAÇÃO

12/02/2009

RESUMO

The present work is inserted in a broad study aiming to understand the chemical and biochemical mechanisms involved in wood biodegradation by Ceriporiopsis subvermispora. Particularly, the relationship between the Fe3+-reducing activity present in aqueous extracts recovered from Ceriporiopsis subvermispora cultures on wood with the initiation of linoleic acid peroxidation reactions was evaluated. Wood chips were biotreated for periods varying from 7 to 28 days. After biotreatment, the wood chips were extracted with water and the resulting extracts were characterized according to their Fe3+-reducing activity, as well as their capacity to initiate linoleic acid peroxidation reactions in vitro. The peroxidation reactions were monitored through O2 consumption by using an appropriated Oximeter. Based on these assays, it was possible to show that Fe2+ ions added directly to the reaction media or the addition of Fe3+ ions plus aqueous extracts were able to generate hidroperoxil radicals that initiated linoleic acid peroxidation. The control reactions indicated that the peroxidation did not occur in the presence of Fe3+ ions alone. Addition of methanol to the reaction media containing Fe2+ did not diminish the lipid peroxidation extent, suggesting that the reaction should not depend on the formation of hydroxyl radical. The Fe3+-reducing activity and the capacity to initiate linoleic acid peroxidation increased in the aqueous wood extracts as a function of culturing time. The ultrafiltration of the extracts associated with gel permeation chromatography (GPC) studies indicated that most of the reducing activity and the peroxidation capacity present in the extracts were assigned to compounds presenting molecular mass lower than 5 kDa. In the fraction lower than 5 kDa some organic compounds were identified by using gas chromatography coupled to mass spectrometry (GC/MS). Palmitic and estearic acids, glycerol, oxalic acid and some aromatic compounds such as vanillin, vanillic, gallic and syringic acids were identified. Vanillin, detected in all the studied samples, was used as a standard for comparative evaluation of the Fe3+-reducing activities detected in the extracts. The estimated concentrations of vanillin in the extracts varied from 5 to 22 μmol/L of ultrafiltrated extract. Therefore, 5 to 30 μM standard solutions of va nillin were assayed for their Fe3+-reducing activity. These solutions reduced 0.5 to 0.7?M of Fe3+ after 10 min reaction. The comparison of these data with the Fe3+-reducing capacity found in the ultrafiltrated aqueous extract from the 14-day biotreated sample, 43 ? M of Fe3+ reduced after 10 min reaction, suggested that most of the reducing capacity in the extracts could not be attributed to compounds detect by GC/MS. Conversely, the Fe3+-reducing capacity could be assigned to compounds with higher molar mass as already observed in the GPC studies (3 to 5 kDa). These data suggest that the reducing activity detected in the aqueous extracts would not be compatible with low molar mass compounds containing 1 or, at least 2, aromatic rings. Instead, the Fe3+-reducing capacity should be assigned to high molar mass phenolic derivatives produced during the lignin biodegradation.

ASSUNTO(S)

Ácido linoleico biodegradação de madeira biopolpação biopulping ceriporiopsis subvermispora ceriporiopsis subvermispora fenton reaction ferro iron linoleic acid lipid peroxidation peroxidação de lipídeos reação de fenton wood biodegradation

Documentos Relacionados