Estudo e desenvolvimento de um capacitor eletrolítico de nióbio

AUTOR(ES)
FONTE

IBICT - Instituto Brasileiro de Informação em Ciência e Tecnologia

DATA DE PUBLICAÇÃO

11/05/2012

RESUMO

Procura-se encontrar uma alternativa para os atuais capacitores eletrolíticos de tântalo existentes no mercado, devido ao seu alto custo. O nióbio é um substituto em potencial, pois ambos pertencem ao mesmo grupo da tabela periódica e devido a isso têm várias propriedades físicas e químicas semelhantes. O nióbio apresenta diversas aplicações tecnologicamente importantes e o Brasil possui as maiores reservas mundiais, em torno de 96%. Existe inclusive nióbio contido em reservas de tantalita e columbita no Rio Grande do Norte. Esses capacitores eletrolíticos possuem alta capacitância especifica, ou seja, podem armazenar altas energias em volumes pequenos comparados a outros tipos de capacitores. Esse é o principal atrativo desse tipo de capacitores, pois existe uma crescente demanda na produção de capacitores com capacitância especifica cada vez mais alta, isso devido à miniaturização de diversos aparelhos como GPSs, televisores, computadores, celulares e muitos outros. A rota de produção do capacitor foi feita através da metalurgia do pó. O pó de nióbio inicial fornecido pela EEL-USP foi primeiramente caracterizado através de DRX, MEV, granulometria a laser e FRX, para então ser peneirado em três granulometrias, 200, 400 e 635mesh. Os pós foram então compactados e sinterizados em 1350, 1450 e 1550C usando dois patamares, 30 e 60min. A sinterização é uma das partes mais importantes do processo, pois afeta propriedades como porosidade e limpeza superficial das amostras, que afetaram grandemente a qualidade do capacitor. As amostras sinterizadas sofreram então um processo de oxidação anódica, que criou um filme fino de pentóxido de nióbio sobre toda a superfície porosa da amostra, este filme é o dielétrico do capacitor. As variáveis do processo de oxidação influenciaram no desempenho do filme e conseqüentemente do capacitor. As amostras foram caracterizadas através de medidas elétricas de capacitância, fator de perdas, ESR, densidade relativa, porosidade e área superficial. Após as caracterizações foi feito um tratamento térmico de recozimento em atmosfera de ar a 260C por 60min. Após esse tratamento foram feitas novamente as medidas elétricas. A granulometria do pó e a sinterização afetaram a porosidade e por sua vez a área especifica das amostras. Quanto maior a área do capacitor, maior sua capacitância. O pó que apresentou capacitância mais alta foi o com menor granulometria. Temperaturas e tempos de sinterização maiores causaram amostras com área superficial menores, porém, por outro lado a limpeza superficial de impurezas foi maior para esses casos, de maneira que deve ser feito um balanceamento entre o ganho que se obtém com a limpeza das impurezas e a perda com a diminuição da área especifica. Os melhores resultados foram obtidos para a temperatura de 1450C/60min. A influência do tratamento térmico de recozimento no fator de perdas e na ESR não seguiu um padrão bem definido, pois seus valores aumentaram em alguns casos e diminuíram em outros. Os resultados mais interessantes devido ao tratamento térmico foram com relação à capacitância, que apresentou um aumento para todas as amostras após o tratamento

ASSUNTO(S)

capacitor eletrolítico de nióbio sinterização oxidação anódica engenharia de materiais e metalurgica niobium electrolytic capacitor sintering anodic oxidation

Documentos Relacionados