Estudo da corrosão e corrosão-fadiga em ligas de Al e Al - Li de alta resistência para aplicação aeronáutica / Study behaviour of corrosion and corrosion fatigue in high strength Al and Al - Li alloys for aeronautic application

AUTOR(ES)
FONTE

IBICT - Instituto Brasileiro de Informação em Ciência e Tecnologia

DATA DE PUBLICAÇÃO

03/09/2012

RESUMO

The aircraft industry is constantly looking for improved materials which offer benefits in terms of performance, weight and cost savings. Corrosion and fatigue of aluminium alloys are major issues in the service life assessment of aircraft structures and in the management of aging air fleets. The aim of this study was to evaluate the corrosion and corrosion fatigue processes of 2198-T851 and 7081-T73511 aluminium alloys, which are promising substitutes for the base line 2524-T3 and 7050-T7451 aluminium alloys normally used in aircraft fabrication. Open circuit potential monitoring (OCP), potentiodynamic polarization, potentiodynamic polarization in rotating cylindrical electrode, eletrochemical impedance spectroscopy (EIS), Scanning vibrating electrode technique (SVET) and Scanning Kelvin Probe (SKP) techniques have been used to clarify and quantify the corrosion mechanisms of these Al alloys. Fatigue and corrosion fatigue tests were carried out an applied stress ratio (R) of 0.1, 15 Hz frequency for air and 0.1 Hz frequency for salt spray using a sinusoidal wave form in all cases. The specimens, before and after corrosion and corrosion-fatigue testing were analyzed using scanning electron microscope (SEM). The localised features of all the four alloys are essentially related to the existence of intermetallics that, due to their different nature, may be cathodic or anodic sites in relation to the Al matrix. SEM and EDS analysis allowed to identify the intermetallics that are more active in determining the corrosion behavior of the specimens. The fatigue corrosion results show a slightly reduction in the fatigue life limit by chloride environment for the 2XXX and 7XXX aluminium alloys in each aged condition might be partially attributed to the formation of corrosion pits. Considering the crack propagation stage, the saline environment increased the fatigue crack growth rate for the same range of stress intensity factor.

ASSUNTO(S)

aircraft industry aluminium alloys ambiente salino corrosão corrosão-fadiga corrosion corrosion-fatigue indústria aeronáutica ligas de alumínio saline environment

Documentos Relacionados