Estruturas de dados eficientes para algoritmos evolutivos aplicados a projeto de redes / Efficient Data Structures to Evolutionary Algorithms Applied to Network Design Problems.

AUTOR(ES)
DATA DE PUBLICAÇÃO

2009

RESUMO

Network design problems (NDPs) are very important since they involve several applications from areas of Engineering and Sciences. In order to solve the limitations of traditional algorithms for NDPs that involve real world complex networks (in general, modeled by large-scale complete or sparse graphs), heuristics, such as evolutionary algorithms (EAs), have been investigated. Recent researches have shown that appropriate data structures can improve EA performance when applied to NDPs. One of these data structures is the Node-depth Encoding (NDE). In general, the performance of EAs with NDE has presented relevant results for large-scale NDPs. This thesis investigates the development of a new representation, based on NDE, called Node-depth-degree Encoding (NDDE). The NDDE is composed for improvements of the NDE operators and the development of new reproduction operators that enable the recombination of solutions. In this way, we developed a recombination operator to work with both non-complete and complete graphs, called EHR (Evolutionary History Recombination Operator). We also developed two other operators to work only with complete graphs, named NOX and NPBX. These improvements have the advantage of retaining the computational complexity of the operators relatively low in order to improve the EA performance. The analysis of representation properties have shown that NDDE is a redundant representation and, for this reason, we proposed some strategies to avoid it. This analysis also showed that EHR has low running time and it does not have bias, moreover, it revealed that NOX and NPBX have bias to trees like stars. The application of an EA using the NDDE to classic NDPs, such as, optimal communication spanning tree, degree-constraint minimum spanning tree and one-max tree, showed that the larger the instance is, the better the performance will be in comparison whit other EAs applied to NDPs in the literatura. An EA using the NDE with EHR was applied to a real-world NDP of reconfiguration of energy distribution systems. The results showed that EHR significantly decrease the convergence time of the EA

ASSUNTO(S)

representações de grafos estutura de dados networks design algoritmos evolutivos projeto de redes graph representations evolutionary algorithms data structure

Documentos Relacionados