Estradiol receptor has proteolytic activity that is responsible for its own transformation.

AUTOR(ES)
RESUMO

We have investigated the effect of various protease inhibitors and substrates on the hormone- and temperature-dependent binding of partially purified estradiol-receptor complex to isolated nuclei. Only serine protease substrates and inhibitors significantly depressed estradiol receptor transformation. At 20 degrees C, we observed 50% inhibition with about 3 microM aprotinin or with 1.4 mM diisopropyl fluorophosphate. Aprotinin also blocked those size and charge modifications of receptor that are characteristic of the transformation process. The estradiol receptor was able to bind to aprotinin-agarose only under transforming conditions; i.e., the interaction was hormone- and temperature-dependent and inhibited by molybdate. Diisopropyl fluorophosphate, a covalent reagent for serine esterases, competitively inhibited the binding and specifically eluted the estradiol-receptor complex that had been bound to aprotinin-agarose. These results indicate that estradiol receptor transformation is due to the effect of a serine protease and that the receptor itself is endowed with this catalytic activity, which is triggered by the steroid.

Documentos Relacionados