Estabilidade de curvas tipo-tempo fechadas em variedades lorentzianas / Stability of closed timelike curves in Lorentzian manifolds




Several solutions of Einstein?s field equations admit closed timelike curves (CTCs). We study the linear stability of this kind of curve. We analyze the CTCs in Gödel universe and we find that these curves are stable. The same occurs with the CTCs of a particular case of Gödel-type metric with flat background and with CTCs of a model that contains a single spinning cosmic string. We study all known solutions of Einstein?s equations that contain closed timelike geodesics (CTGs). We find that the CTG presented by Bonnor and Steadman in their model of two Perjeons is not stable under linear perturbations, but we present conditions to have stable CTGs in this model. The CTGs presented by Soares in his topological model and those presented by Grøn and Johannensen in their model of the cloud of strings are not stable. But, analizing the CTGs presented by Steadman in a solution gave by van Stockum, we conclude that these curves are stable. Besides these known CTGs, we find this kind of curve in a particular case of G¨odel-type metric with conformally flat background and we also find that they are stable. We also study the deformation that a Schwarzschild black hole causes in the spacetime of a single spinning cosmic string. We find the CTGs of this new spacetime and we determine conditions to have linear stability


curvas tipo-tempo fechadas maquina do tempo linear stability closed timelike curves time machines estabilidade linear geodesicas tipo-tempo fechadas closed timelike geodesics

Documentos Relacionados