Erythrocyte Hemolysis and Hemoglobin Oxidation Promote Ferric Chloride-induced Vascular Injury*S⃞

AUTOR(ES)
FONTE

American Society for Biochemistry and Molecular Biology

RESUMO

The release of redox-active iron and heme into the blood-stream is toxic to the vasculature, contributing to the development of vascular diseases. How iron induces endothelial injury remains ill defined. To investigate this, we developed a novel ex vivo perfusion chamber that enables direct analysis of the effects of FeCl3 on the vasculature. We demonstrate that FeCl3 treatment of isolated mouse aorta, perfused with whole blood, was associated with endothelial denudation, collagen exposure, and occlusive thrombus formation. Strikingly exposing vessels to FeCl3 alone, in the absence of perfused blood, was associated with only minor vascular injury. Whole blood fractionation studies revealed that FeCl3-induced vascular injury was red blood cell (erythrocyte)-dependent, requiring erythrocyte hemolysis and hemoglobin oxidation for endothelial denudation. Overall these studies define a unique mechanism of Fe3+-induced vascular injury that has implications for the understanding of FeCl3-dependent models of thrombosis and vascular dysfunction associated with severe intravascular hemolysis.

Documentos Relacionados