Enzymes in the NAD+ Salvage Pathway Regulate SIRT1 Activity at Target Gene Promoters*

AUTOR(ES)
FONTE

American Society for Biochemistry and Molecular Biology

RESUMO

In mammals, nic o tin a mide phosphoribosyltransferase (NAMPT) and nic o tin a mide mononucleotide ad en y lyltransferase 1 (NMNAT-1) constitute a nuclear NAD+ salvage pathway which regulates the functions of NAD+-de pend ent enzymes such as the protein deacetylase SIRT1. One of the major functions of SIRT1 is to regulate target gene transcription through modification of chromatin-associated proteins. However, little is known about the molecular mechanisms by which NAD+ biosynthetic enzymes regulate SIRT1 activity to control gene transcription in the nucleus. In this study we show that stable short hairpin RNA-mediated knockdown of NAMPT or NMNAT-1 in MCF-7 breast cancer cells reduces total cellular NAD+ levels and alters global patterns of gene expression. Furthermore, we show that SIRT1 plays a key role in mediating the gene regulatory effects of NAMPT and NMNAT-1. Specifically, we found that SIRT1 binds to the promoters of genes commonly regulated by NAMPT, NMNAT-1, and SIRT1 and that SIRT1 histone deacetylase activity is regulated by NAMPT and NMNAT-1 at these promoters. Most significantly, NMNAT-1 interacts with, and is recruited to target gene promoters by SIRT1. Collectively, our results reveal a mechanism for the direct control of SIRT1 deacetylase activity at a set of target gene promoters by NMNAT-1. This mechanism, in collaboration with NAMPT-de pend ent regulation of nuclear NAD+ production, establishes an important pathway for transcription regulation by NAD+.

Documentos Relacionados