Enantioselective Uptake and Degradation of the Chiral Herbicide Dichlorprop [(RS)-2-(2,4-Dichlorophenoxy)propanoic acid] by Sphingomonas herbicidovorans MH

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

Sphingomonas herbicidovorans MH was able to completely degrade both enantiomers of the chiral herbicide dichlorprop [(RS)-2-(2,4-dichlorophenoxy)propanoic acid], with preferential degradation of the (S) enantiomer over the (R) enantiomer. These results are in agreement with the recently reported enantioselective degradation of mecoprop [(RS)-2-(4-chloro-2-methylphenoxy)propanoic acid] by this bacterium (C. Zipper, K. Nickel, W. Angst, and H.-P. E. Kohler, Appl. Environ. Microbiol. 62:4318–4322, 1996). Uptake of (R)-dichlorprop, (S)-dichlorprop, and 2,4-D (2,4-dichlorophenoxyacetic acid) was inducible. Initial uptake rates of cells grown on the respective substrate showed substrate saturation kinetics with apparent affinity constants (Kt) of 108, 93, and 117 μM and maximal velocities (Vmax) of 19, 10, and 21 nmol min−1 mg of protein−1 for (R)-dichlorprop, (S)-dichlorprop, and 2,4-D, respectively. Transport of (R)-dichlorprop, (S)-dichlorprop, and 2,4-D was completely inhibited by various uncouplers and by nigericin but was only marginally inhibited by valinomycin and by the ATPase inhibitor N,N′-dicyclohexylcarbodiimine. Experiments on the substrate specificity of the putative transport systems revealed that (R)-dichlorprop uptake was inhibited by (R)-mecoprop but not by (S)-mecoprop, (S)-dichlorprop, or 2,4-D. On the other hand, the (S)-dichlorprop transport was inhibited by (S)-mecoprop but not by (R)-mecoprop, (R)-dichlorprop, or 2,4-D. These results provide evidence that the first step in the degradation of dichlorprop, mecoprop, and 2,4-D by S. herbicidovorans is active transport and that three inducible, proton gradient-driven uptake systems exist: one for (R)-dichlorprop and (R)-mecoprop, another for (S)-dichlorprop and (S)-mecoprop, and a third for 2,4-D.

Documentos Relacionados