Elementos rigidos, valorizações e estrutura de aneis de Witt / Rigid elements, valuations and structure of Witt rings

AUTOR(ES)
DATA DE PUBLICAÇÃO

2007

RESUMO

An ordered field is an algebraic structure like the field of real numbers. However, while the field of real numbers have only one ordering, an arbitrary ordered field F may have more than one ordering, and also a infinite and uncountble number of orderings is allowed. To each element x Î F one can associate an binary quadratic form [1, x], called Pfister 1-fold form. The set of elements in F = F 0} which are represented by [1, x] is a group D[1,x], called value group of [1,x]. An element d Σ F is called rigid if D[1, d] = F2 U dF2, where F 2 denotes the subgroup of squares in F . An element d is called birigid if d and -d are both rigid. The main purpose of this thesis is to prove an structure theorem for Witt ring (of equivalence classes of quadratic forms) of an ordered field F with a rigid element which is not birigid and is negative in at least one ordering of F, that is, we get a decomposition of the Witt ring of F as a product of Witt rings of extensions H ˆ F and K ‰ F, both inside the quadratic closure of F. The Witt rings of H and K have a simpler structure than Witt ring of F. We get fields H and K by builting subgroups Rd and Sd associated to the rigid element d and making the addicional assumption that F = Rd·Sd holds. The field H is a henselization of F relative to a valuation ring (A;mA) of F such that Rd = (1 + mA) F2. The pythagorean field K has space of orderings XK homeomorphic to X/Sd, the space of orderings of F which contain Sd. Moreover, we settle an necessary and suficient condiction to decomposition F = Rd·Sd holds, relative to value group and residue field of valuation ring A.

ASSUNTO(S)

aneis de formally real fields witt rings witt quadratic forms corpos formalmente reais formas quadraticas

Documentos Relacionados