“Electronic nose” detects major histocompatibility complex-dependent prerenal and postrenal odor components

AUTOR(ES)
FONTE

The National Academy of Sciences

RESUMO

Mice prefer to mate with individuals expressing different MHC genes from their own. Volatile components presenting MHC-dependent odor types are present in urine and can be detected by mice, as shown by extensive behavioral studies. Similar odor types are suspected to influence human behavior as well. Although a recent report indicates that MHC expression influences the ratio of volatile compounds such as phenylacetic acid, so far no other means than studying the behavior of mice or rats has been available to assess odor types. Here, we report the ability of a gas sensor array (referred to as “electronic nose”) to detect MHC-dependent odor types. The electronic nose consists of an array of chemophysical detectors, in our case quartz crystal microbalances and semiconducting metal-oxide sensors that change frequency or conductivity upon binding of very small numbers of individual molecules present in the gas phase of odorous fluids. The pattern of changes is characteristic for a particular smell. Our electronic nose distinguishes the urine odor types of MHC congenic mouse strains, MHC class I mutant mice, and HLA-A2 transgenic mice. In addition, MHC-dependent odor types can be detected in serum. The device also clearly differentiates between individual odor types of human sera from HLA homozygous individuals; however, HLA expression seems to have only a secondary influence. Thus, odor-type research can now be carried out with an objective and fast through-put system independent of behavioral studies.

Documentos Relacionados