Electron microscopic study of cell surface rings during cell division and morphogenesis of Arthrobacter crystallopoietes.

AUTOR(ES)
RESUMO

The whole cell ultrastructure during cell division and morphogenesis of Arthrobacter crystallopoietes was monitored using electron microscopic techniques. Glucose-grown spherical cells were inoculated into succinate-based medium. In this medium, the organism undergoes a morphogenetic cycle consisting of elongation of spheres to rods, exponential growth as rods, and fragmentation of rods to spherical cells. Raised bands or rings that encircled the cells were evident on the cell surface of both sphere- and rod-shaped cells. Many rod-shaped cells possessed two or more rings arranged adjacent to each other in a parallel orientation. At each cell division a new ring was formed on both siblings. However, as predicted by the proposed model of unidirectional cell growth and by maintaining a ring from the previous generation, unequal numbers of rings were observed on sibling cells. Only one ring was visible on most of the spherical inoculum cells, but in some cases a second ring perpendicular to the other ring was observed. Parallel rings were found on spherical cells resulting from fragmentation or reductive cell division of rods during the stationary growth phase. Thus, these spheres could be distinguished from inoculum spheres containing a single ring or perpendicular orientation of rings. The number of rings per cell and arrangement of rings on the cell surface of sibling cells after cell division, but before cell separation, are discussed with respect to cell age, cell division, and sphere-rod-sphere morphogenesis of A. crystallopoietes.

Documentos Relacionados