ELECTRIC DISTRIBUTION POWER SYSTEMS RELIABILITY OPTIMIZATION: An Approach Considering the Selection and Allocation of Protection and Switching Devices / OTIMIZAÇÃO DA CONFIABILIDADE DE SISTEMAS DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA: Uma Abordagem Considerando a Seleção e Alocação de Dispositivos de Proteção e Manobras

AUTOR(ES)
DATA DE PUBLICAÇÃO

2009

RESUMO

One of the main goals of the electric utilities is to provide energy to its customers in a reliable and low cost way. Traditionally, the electricity sector regulatory commissions impose continuity targets, which must be carried out, to avoid great penalties. For many years, the electric utilities have adopted the practice of allowing the increment of temporary interruptions, aiming the reduction of permanent interruptions in energy supply, through coordinated protection schemes. However, due to the increase growing in electronic loads, and the existence of complex power-driven industrial processes, there is a less tolerance in short duration interruptions events. Therefore, the reliability must be characterized as widely way, considering the occurrence of such disturbances. The definition of protection devices types, and its arrangement in the feeder, enables the restriction of faults propagation, reducing the number of consumers subject to interruptions in energy supply. Similarly, the allocation of switching devices in an optimized way, provides a reduction of the interruptions duration, allowing the isolation of portions of the network subject to failure, the reconfiguration of the feeder and restoration of the supply to the consumer, in permanent interruptions cases. Targeting these factors, in this work are proposed two methods to optimize the reliability of electrical distribution systems. The optimization with a single objective is based on optimized allocation of protective and switching devices in the feeder, aiming the minimization of the reliability indices that considers the occurrence of permanent interruptions in energy supply. It is possible the choice of different indices, considering parameters such as load, number of consumers, and energy costs related to the occurrence of interruptions. The protection scheme, in this case is pre-defined (coordinated or selective), and applied to all reclosers allocated in the process of optimization, as well as the breaker of the substation. The second methodology - called double objective - is based on simultaneous minimization of reliability index that take into account the occurrence of permanent interruptions, and the indicator MAIFIE (Momentary Average Interruption Event Frequency Index), which considers the incidence of events that cause temporary interruptions in energy supply. Thus, besides the allocation of protection and switching devices, the optimization consists in definition of the protection scheme to be employed in reclosers and circuit breaker at the substation. Both formulations result in models of nonlinear programming with discontinuous and non-differentiable objective functions, subject to non-linear restrictions. These restrictions reflect in economic and technical limitations, such as coordination and selectivity between the protective devices, topology of the feeder, maximum number of devices available for allocation, and others. In order to find the best solution of the problem with single objective, a Simple Genetic Algorithm is proposed. A conjunct of best solutions of the dual objective problem was accomplished by using Multiobjective Genetic Algorithm. Among these, the most appropriate solution is selected through the use of Fuzzy Inference System. The performance of the algorithms and the quality of the solutions were verified by submitting a real 421 bus distribution system in the process of optimization. The results are commented and compared with the commonly practices used by electric companies.

ASSUNTO(S)

lógica nebulosa sistemas elétricos de distribuição reliability optimization fuzzy logic alocação otimizada de dispositivos de proteção e manobras engenharia eletrica distribution power systems genetic algorithms algoritmos genéticos otimização da confiabilidade optimal allocation of protective and switching devices

Documentos Relacionados