Effects of rpoA and cysB mutations on acid induction of biodegradative arginine decarboxylase in Escherichia coli.

AUTOR(ES)
RESUMO

For Escherichia coli, there have been more and more examples illustrating that the alpha subunit of RNA polymerase is directly involved in the activation of gene transcription by interaction with activator proteins. Because of the vital function of the alpha subunit in cell growth, only a limited number of mutations in its structural gene, rpoA, have been isolated. We obtained a number of these mutants and examined the effects of these mutations on the acid induction of adi and cad gene expression. Several mutations caused a small reduction in adi promoter activity at inducing pH. One mutation, rpoA341, essentially eliminated adi promoter activity, while it had little effect on the cad promoter. During the course of a separate study, we isolated a plasmid that enhanced adi expression. Further characterization of this plasmid showed that it contained cysB, the structural gene for the positive regulator for most cys operon genes. Introduction of a cysB mutation into an adi::lac fusion strain and beta-galactosidase assay studies of the resultant adi::lac cysB mutant established that a wild-type cysB gene was required for efficient acid induction of adi expression. These results suggest that a possible interaction between CysB and the alpha subunit of RNA polymerase is involved in activation of adi transcription.

Documentos Relacionados