Effects of N-acetylglucosamine on carbohydrate fermentation by Streptococcus mutans NCTC 10449 and Streptococcus sobrinus SL-1.

AUTOR(ES)
RESUMO

We have investigated the ability of two species of streptococci isolated from the human oral cavity (Streptococcus mutans NCTC 10449 and Streptococcus sobrinus SL-1) to metabolize N-acetylglucosamine (GlcNAc), a naturally occurring amino sugar present in saliva and human glycoproteins, when provided as the sole fermentable carbohydrate and determined the effects of the presence of GlcNAc on the fermentation of other carbohydrates. S. mutans used GlcNAc at concentrations of up to 10 mM to increase cell numbers, but S. sobrinus was unable to ferment the amino sugar alone and its uptake only occurred in the presence of a fermentable carbohydrate. GlcNAc had a marked inhibitory effect on the ability of S. sobrinus to produce lactic acid from glucose, sucrose, and fructose, at the same time increasing the lag period and doubling time of batch-grown cells. Such patterns of inhibition were found with S. mutans, but the effects were less than those seen in S. sobrinus. In mixed culture studies of the two species, S. sobrinus became the predominant organism when 10 mM glucose was supplied as the sole fermentable carbohydrate, with a concomitant decrease in the numbers of S. mutans cells, but supplementation of the broth with 10 mM glucose and 10 mM GlcNAc resulted in the emergence of S. mutans as the predominant organism. S. mutans and S. sobrinus grown in media containing glucose possessed the ability to transport glucose and GlcNAc, probably via the same glucose-phosphotransferase system at similar rates. However, intracellular levels of N-acetylglucosamine-6-phosphate deacetylase and glucosamine-6-phosphate deaminase were markedly higher in S. mutans grown on glucose and GlcNAc than in S. sobrinus: 34 and 398 and 8 and 17 nmol of NADPH formed per mi per mg of protein for S. mutans and S. sobrinus, respectively. We propose that GlcNAc inhibited growth of S. sobrinus in media containing glucose and GlcNAc by competing with glucose for the glucose phosphotransferase, depleting intracellular levels of phosphoenolpyruvate, and possessing, in contrast to S. mutans, low levels of N-acetyl-glucosamine-6-phosphate deacetylase and glucosamine-6-phosphate deaminase activity. Together, these data suggest that in dental plaque, S. sobrinus when exposed to GlcNAc will have a reduced ability to compete with S. mutans for dietary carbohydrates, contributing to the greater frequency of isolation of S. mutans from human populations.

Documentos Relacionados