Effects of Homology, Size and Exchange on the Meiotic Segregation of Model Chromosomes in Saccharomyces Cerevisiae

AUTOR(ES)
RESUMO

In most eukaryotic organisms, chiasmata, the connections formed between homologous chromosomes as a consequence of crossing over, are important for ensuring that the homologues move away from each other at meiosis I. Some organisms have the capacity to partition the rare homologues that have failed to experience reciprocal recombination. The yeast Saccharomyces cerevisiae is able to correctly partition achiasmate homologues with low fidelity by a mechanism that is largely unknown. It is possible to test which parameters affect the ability of achiasmate chromosomes to segregate by constructing strains that will have three achiasmate chromosomes at the time of meiosis. The meiotic partitioning of these chromosomes can be monitored to determine which ones segregate away from each other at meiosis I. This approach was used to test the influence of homologous yeast DNA sequences, recombination intiation sites, chromosome size and crossing over on the meiotic segregation of the model chromosomes. Chromosome size had no effect on achiasmate segregation. The influence of homologous yeast sequences on the segregation of noncrossover model chromosomes was negligible. In meioses in which two of the three model chromosomes experienced a crossover, they nearly always disjoined at meiosis I.

Documentos Relacionados