Effects of alcohol-induced lipid interdigitation on proton permeability in L-alpha-dipalmitoylphosphatidylcholine vesicles.

AUTOR(ES)
RESUMO

6-Carboxyfluorescein was employed to examine the effect of alcohol-induced lipid interdigitation on proton permeability in L-alpha-dipalmitoylphosphatidylcholine (DPPC) large unilamellar vesicles. Proton permeability was measured by monitoring the decrease of 6-carboxyfluorescein fluorescence after a pH gradient from 3.5 (outside the vesicle) to 8.0 (inside the vesicle) was established. At 20 degrees C and below 1.2 M ethanol, the fluorescence decrease is best described by a single exponential function. Above 1.2 M ethanol, the intensity decrease is better described by a two-exponential decay law. Using the fitted rate constants and the vesicle radii determined from light-scattering measurements, the proton permeability coefficient, P, in DPPC vesicles was calculated as a function of ethanol concentration. At 20 degrees C, P increases monotonically with increasing ethanol content up to 1.0 M, followed by an abrupt increase at 1.2 M. The vesicle size also exhibits a sudden increase at around 1.2 M ethanol, which has been shown to result from vesicle aggregation rather than vesicle fusion. The abrupt increases in P and in vesicle size occur at the concentration region close to the critical ethanol concentration for the formation of the fully interdigitated gel state of DPPC. At 14 degrees C, the abrupt change in P shifts to 1.9-2.0 M ethanol, completely in accordance with the ethanol-temperature phase diagram of interdigitated DPPC. Effects of methanol and benzyl alcohol on lipid interdigitation have also been examined. At 20 degrees C, DPPC large unilamellar vesicles exhibit a dramatic change in P at 3 M methanol and at 40 mM benzyl alcohol. These concentrations come close to the critical methanol and benzyl alcohol concentrations for the formation of fully interdigitated DPPC structures determined previously by others. It can be concluded that proton permeability increases dramatically as DPPC is transformed from the noninterdigitated gel to the fully interdigitated gel state by high concentrations of alcohol. This marked increase in proton permeability can be attributed to the combined effect of the changes in membrane thickness and surface charge density, due to the ethanol-induced lipid interdigitation. The possible effects of the increased proton permeability caused by ingested ethanol on gastric mucosal membranes are discussed.

Documentos Relacionados