Effect of quinolones and other antimicrobial agents on cell-associated Legionella pneumophila.

AUTOR(ES)
RESUMO

We evaluated the in vitro susceptibility of Legionella pneumophila ATCC 33152 (serogroup I) to 13 antibiotics alone and in combination with rifampin (0.1 mg/liter) by three methods. Extracellular susceptibility was determined by MIC determinations and time kill curves in buffered yeast extract broth, while intracellular susceptibility was determined by peripheral human monocytes in RPMI 1640 culture medium. Antibiotic concentrations equal to or greater than the broth dilution MIC inhibited or killed L. pneumophila by the time kill method, except this was not the case for trimethoprim-sulfamethoxazole. Antibiotic concentrations below the broth dilution MIC did not inhibit Legionella growth. The only antibiotic-rifampin combinations which produced improved killing of L. pneumophila by the time kill method were those in which the logarithmic growth of L. pneumophila occurred during the experiment (rosoxacin, amifloxacin, cinoxacin, trimethoprim-sulfamethoxazole, clindamycin, and doxycycline). Neither direct MICs nor time kill curve assays accurately predicted intracellular L. pneumophila susceptibility. Rifampin, erythromycin, ciprofloxacin, rosoxacin, enoxacin, amifloxacin, gentamicin, clindamycin, and doxycycline all inhibited intracellular L. pneumophila growth at readily achievable concentrations in serum. Cefoxitin and thienamycin showed no inhibition of growth, although they were present extracellularly at concentrations that were 20 to 1,000 times their broth dilution MICs. Clindamycin was the only antibiotic that was able to inhibit intracellular L. pneumophila growth at an extracellular concentration below its MIC. The gentamicin (5 mg/liter)-rifampin combination was the only antibiotic-rifampin combination which demonstrated decreased cell-associated Legionella survival in this model of in vitro susceptibility.

Documentos Relacionados