Effect of milling variables and high-energy mills on the NiAl intermetalic compound synthesis. / Efeito das variáveis de moagem e dos moinhos de alta energia sobre a síntese do composto intermetálico NiAl.

AUTOR(ES)
DATA DE PUBLICAÇÃO

2010

RESUMO

A study on the effect of milling variables and high-energy mills on the NiAl intermetallic compound synthesis was performed. The effect of ball-to-powder ratio, Ni particle initial size, the use of process control agent and milling media size on NiAl synthesis in a Spex mill was evaluated using a factorial design. It was shown that ball-to-powder ratio plays an important role in the ignition time of the mechanically induced reaction of NiAl intermetallic formation; moreover, an interaction of ball-to-powder ratio, process control agent and milling media size was found to affect the particle size of milling products. During milling of Ni and Al powder, the yield of an Attritor mill was found dependent on ball-to-powder ratio and the process control agent quantity. After combustion synthesis of powders, which were previously mechanically activated in the Attritor mill, monophasic NiAl or a mixture of NiAl3, Ni2Al3 and NiAl were obtained depending on synthesis temperature; however, swelling of samples was verified in both situations. The enthalpy of formation of Ni2Al3 and Ni3Al was measured using differential scanning calorimetry and the experimental values were, respectively, 167 kJ/mol and 93 kJ/mol. NiAl compound formation occurred through an exothermic reaction in Spex and Attritor mills, on the other hand, this intermetallic was gradually formed during milling in the planetary mill, and, in this milling device, the time for compound formation was dependent on process control agent quantity. Furthermore, the energy transferred to the powder during milling in planetary and Attritor mills was estimated, and the NiAl synthesized in these devices was partially disordered. Also, the Rietveld method was employed to determine the amount of NiAl synthesized in planetary and Attritor mills, and, also, estimate crystallite size and lattice strain of milling products. Finally, milling products of planetary and Attritor mills were consolidated and sintered at 1300ºC so that Vickers microhardness and flexion tests could be performed; these tests indicated a fragile behavior, and hardness lower than the value found on literature.

ASSUNTO(S)

synthesis moagem de alta energia nial high-energy milling nial síntese

Documentos Relacionados