Effect of lipoteichoic acid on thermotropic membrane properties.

AUTOR(ES)
RESUMO

Lipoteichoic acid, diglucosyldiacylglycerol, and phosphatidylglycerol isolated from Staphylococcus aureus were embedded in dipalmitoylglycerophosphoglycerol vesicles, and their thermotropic influence on this matrix was studied by differential scanning calorimetry. The natural fatty acids of phosphatidylglycerol effected peak broadening and a decrease in molar heat capacity. These effects were more pronounced with the glycolipid, which also increased the main transition temperature. With the lipoteichoic acid mixtures, two broad main transition peaks were observed, possibly due to different levels of lipoteichoic acid in vesicles. Both peaks showed a further upshift in transition temperatures and a pronounced decrease in molar heat capacity. Since the diacylglycerol moieties of all three amphiphiles were practically identical, the differences in the thermotropic effects have to be ascribed to the different structures of the head groups. Diglucosyldiacylglycerol is proposed to exert an additional effect by hydrogen bonding the hydroxyls of the sugar rings to their phospholipid neighbors. The stronger effect of lipoteichoic acid points to dynamic interactions of the long hydrophilic chain with the vesicle surface, which stabilize the membrane structure.

Documentos Relacionados