Efeito Kerr magneto-óptico espectral e sperimagnetismo de filmes amorfos de terra rara-Co / Spectral magneto-optical Kerr effect and magnetism-speri of the films of amorphous rare earth-Co

AUTOR(ES)
FONTE

IBICT - Instituto Brasileiro de Informação em Ciência e Tecnologia

DATA DE PUBLICAÇÃO

28/05/2001

RESUMO

We have observed the spectral behavior of the transverse magnetooptical Kerr effect (TMOKE) in thin films of rare earth - cobalt amorphous alloys for the visible and the near-ultraviolet ranges of spectrurn (wavelength fiom 325 nm up to 670 nm). The relative change of reflectivity has shown a maximum at the blue wavelength. We have concluded that this magneto-optical signal is proportional to the cobalt magnetization and the proportionality constant depends on the alloy composition and on the wavelength. Besides developing an apparatus and a new phase modulation technique for the TMOKE, we have compared it to the more usual amplitude modulation TMOKE technique. This apparatus operates using either a He-Cd laser ( = 325 nm and 442 nm) for a red diode laser ( = 670nm). We have proposed the figure of merit for the transverse Kerr effect (F,) by analogy with the figure of merit for the longitudinal and polar Kerr effect (Fe). We have measured F, as a function of the angle of incidence and we have shown that F, has the same behavior of the magneto-optical signal. A comparison between F, and Fe has shown that F, is as good parameter as well as Fe for the characterization of the materials magneto-optical quality. We have studied the sperimagnetism of thin films of amorphous alloys with weak (Gd-Co) and strong (Ho-Co) random local anisotropy by the thermal behavior of the magnetic and magneto-optical hysteresis loops. The phenomena of compensation, coercivity and spin-reorientation phase transitions were observed. The comparison between magnetic and magneto-optical hysteresis loops for Gd20C~8h0as shown that the transition occurs from a colinear phase to an opposite collinear phase. In this case, the transition magnetic field grows exponentially when the temperature increases.

ASSUNTO(S)

efeitos kerr magneto-ópticos figura de mérito figure of merit filmes amorfos de terra rara-co magnetism-speri magneto-optical kerr effect modulação de fase movies amorphous rare earth-co phase modulation sperimagnetismp

Documentos Relacionados