EFEITO DO HG2+ E DOS ÍONS CU2+, FE2+, NI2+, SN2+ E ZN2+ NA ESTABILIDADE DE NANOPARTÍCULAS DE PRATA: UMA PRÁTICA INTERDISCIPLINAR DE NANOTECNOLOGIA EXPERIMENTAL

AUTOR(ES)
FONTE

Quím. Nova

DATA DE PUBLICAÇÃO

2021-04

RESUMO

The growing predominance of nanoscience and nanotechnology makes it increasingly important that these topics become an integral part of all scientific education. For this reason, in the present work, an interdisciplinary experiment of nanotechnology is introduced. As silver nanoparticles (AgNPs) are the most applied nanomaterial in consumer products, the current understanding of their stability is needed. Silver nanoparticles were synthesized using chitosan as a capping agent and a size distribution of 9.7 nm was determined by transmission electron microscopy. After preparation, the AgNPs colloid was divided into two parts. One part was stored in dark at 4.0 ± 1.0 ºC and it was removed out from the fridge only to be analyzed by UV-vis. The second part was used to study the colloid stability in the presence of Hg2+, and also in the combination of mercury with the ions Cu2+, Fe2+, Ni2+, Sn2+, and Zn2+. The UV-vis analysis indicated that the AgNPs were oxidized in the presence of these ions, but in different intensities, which can be explained by using the electrochemistry approach. This work may be relevant for graduate-level or upper-level undergraduate experimental course preparation as the procedure is simple and easily reproducible in a typical chemistry laboratory.

Documentos Relacionados