Efecto de las variables experimentales sobre la microdureza en aleaciones Al-6Si-3Cu-xMg T6

AUTOR(ES)
FONTE

Matéria (Rio de Janeiro)

DATA DE PUBLICAÇÃO

2008-03

RESUMO

Three Al-6Si-3Cu-xMg (x = 0.59, 3.80 and 6.78 wt. %) alloys were produced using conventional ingot casting metallurgy and melt-spinning. The study was focused to investigate the effect of Magnesium content and aging time ant temperature on precipitates and microhardness. Obtained alloys were solution heat treated at 480 ºC for 12 h and aged at 150, 180 and 210 °C for times between 0.05 and 100 h. Multifactorial designs were used, summarized in the dependency: VHN= f (t, T, %Mg), where VHN is Vickers microhardness, t is aging time and T is aging temperature. Transmission Electron Microscopy and microhardness techniques were used. Results shown variations in precipitates composition: CuAl2 needles for the alloys with 0.59% Mg and Q (Al5Cu2Mg8Si6) with irregular shapes, for the alloys with 3.80 and 6.78% Mg. For melt-spinning alloys, temperature originates the most significant variation on microhardness, followed by Mg content and aging time. The increase of Mg content originates greater microhardnesses. For conventionally cast alloys temperature is the only factor that significantly changes microhardness.

Documentos Relacionados