Dynamic optimization of a FCC converter unit: numerical analysis

AUTOR(ES)
FONTE

Brazilian Journal of Chemical Engineering

DATA DE PUBLICAÇÃO

2011-03

RESUMO

Fluidized-bed Catalytic Cracking (FCC) is a process subject to frequent variations in the operating conditions (including feed quality and feed rate). The production objectives usually are the maximization of LPG and gasoline production. This fact makes the FCC converter unit an excellent opportunity for real-time optimization. The present work aims to apply a dynamic optimization in an industrial FCC converter unit, using a mechanistic dynamic model, and to carry out a numerical analysis of the solution procedure. A simultaneous approach was used to discretize the system of differential-algebraic equations and the resulting large-scale NLP problem was solved using the IPOPT solver. This study also does a short comparison between the results obtained by a potential dynamic real-time optimization (DRTO) against a possible steady-state real-time optimization (RTO) application. The results demonstrate that the application of dynamic real-time optimization of a FCC converter unit can bring significant benefits in production.

Documentos Relacionados