Diversidade microbiana em solos sob florestas de Araucaria angustifolia / Microbial diversity in soils under Araucaria angustifolia forests

AUTOR(ES)
DATA DE PUBLICAÇÃO

2008

RESUMO

The Ombrophilic Mixed Forest, also called Araucaria Forest, represents one of the richest remainders of subtropical pluvial forests in Brazil. Its main representative species is the endangered Araucaria angustifolia. The microbial diversity plays an important role in functioning of forest ecosystems. However, the microbial diversity in soils with araucaria forests is mostly unknown. The aim of this work was to evaluate the diversity, structure of microbial communities in their possible functions in a natural preserved araucaria forest (FN), a planted araucaria forest (RF) and a planted araucaria forest impacted by accidental fire (RQ). The study was carried out at the State Park of Campos of Jordão (SP). For each area, ten araucaria trees were randomly selected and a sample composed of three sub-samples was collected at approximately one meter from the trunk of each tree. Chemical and microbiological attributes, as well as structures of bacterial and archaeal communities were evaluated using PCR-DGGE and the partial sequencing of the 16S rRNA gene from Bacteria, community level physiological profiles using Biolog, the phospholipid fatty acids profiles (PLFAs). The studied areas were characterized by acidic soils, with high content of organic matter (OM) and low availability of basic metallic cations. The area FN presented the highest contents of carbon in the microbial biomass (CBM), higher basal respiration activity (C-CO2) and higher microbial biomass carbon: total organic carbon ratio (CBM:TOC), compared to RF and RQ. The highest values of metabolic quotient (qCO2) were observed in RQ, when compared to FN and RF. Using canonical discriminant analysis (CDA), qCO2, Mg concentration and pH were identified as the main attributes responsible for the discrimination of the areas, followed by the P concentration. The PCR-DGGE analysis revealed that the bacterial community structures in FN and RQ share higher levels of similarity, as compared to RF. Non-metric multidimensional scale analysis (NMDS) and ANOSIM based on the profiles of bacterial 16S rRNA gene amplicons showed that the all three areas had different bacterial communities, whereas archaeal communities were similar, based on 16S rRNA genes amplicon profiles. The phylogenetic affiliation of 16S rRNA gene clone sequences showed that soil from FN presents higher taxa diversity, as compared to RF and RQ. The phyla Proteobacteria and Actinobacteria were the most frequent in the three areas studied. Higher Shannon index was observed in RQ soil than FN and RF soils. Biolog analysis showed that FN has the highest substrate utilization rates, when compared to RF and RQ, which did not show significant differences. In general, PLFAs profiles did not show differences for the areas studied. Estimated bacterial biomass was higher than fugal biomass, with predominance of Gram-positive bacteria. Integration of chemical and microbial attributes through multivariate analyses is essential for identifying the factors determining microbial community structure in forest soils.

ASSUNTO(S)

ombrophilic mixed forest pcr-dgge soil biologia plfas chemical attributes of the soil análise multivariada seqüências do solo solo florestal. biolog microbiologia do solo bacteria química do solo pinheiro multivariate analysis sequencing archaea microbiological attributes of the soil

Documentos Relacionados