Distribution of the Sites of Alkaline Phosphatase(s) Activity in Vegetative Cells of Bacillus subtilis

AUTOR(ES)
RESUMO

Sites of alkaline phosphatase activity have been located by an electron microscopic histochemical (Gomori) technique in vegetative cells of a repressible strain SB15 of Bacillus subtilis, derepressed and repressed by inorganic phosphate, and in a mutant SB1004 which forms alkaline phosphatase in a medium high in phosphate. The sites of enzyme activity were revealed as discrete, dense, and largely spherical bodies of varying sizes (20 to 150 nm). Cells of both repressible and repression-resistant strains acted on a wide variety of phosphate esters (p-nitrophenylphosphate, β-glycerophosphate, adenosine-5′-phosphate, glucose-6-phosphate, glucose-l-phosphate, adenosine triphosphate, and sodium pyrophosphate) to produce inorganic phosphorus under conditions of alkaline phosphatase assay [0.05 m tris(hydroxymethyl)aminomethane buffer (pH 8.4) containing 2 mm MgCl2]. The purified alkaline phosphatase also acted on all these esters, although much less effectively on adenosine triphosphate and sodium pyrophosphate than did the cells. Comparison of the relative utilization of the various substrates by repressed and derepressed cells and purified enzyme suggested the presence of multiple enzymes in the cells. Thus, the cytochemical method of trapping the newly generated inorganic phosphorus determines the location of an alkaline phosphatase of broad substrate profile, and in addition locates the sites of other enzymes generating inorganic phosphorus under identical conditions of assay. It is intriguing that all of these enzymes usually exist in a few clusters attached to the peripheral plasma membrane. In addition to this predominant location, there were a few sites of enzyme activity in the cytoplasm unattached to any discernible structure, and also in the cell wall of the repression-resistant and of the derepressed, repressible strains.

Documentos Relacionados